Studying the blue-violet photoluminescence from Sn implanted SiO$_2$ films using a two-step annealing process

F Kremer$^{a,*}$, F P Luce$^a$, Z E Fabrim$^{a,b}$, D F Sanchez$^a$, R Lang$^b$, F C Zawislak$^c$ and P F P Fichtner$^{a,b,c}$

$^a$Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
$^b$Programa de Pós-Graduação em Ciências dos Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
$^c$Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

*Current address: Department of Electronic Materials Engineering Research School of Physics and Engineering Australian National University Canberra ACT 0200 Australia.

The blue-violet photoluminescence (PL) response of ion beam synthesized Sn nanoparticles (NPs) in silica is studied in samples submitted to a two-step thermal annealing process [1]. This process consists of a low temperature and longtime aging treatment followed by a high temperature and short time one [2]. The annealed samples were characterized by Rutherford backscattering spectrometry (RBS) and transmission electron microscopy (TEM). The results show that for non-aged control samples, the mean particle size increases as a function of temperature. In stark contrast, the TEM and RBS results show that the aging treatment causes the formation of a thermally stable and dense array of rather small Sn NPs. This phenomenon is correlated with the enhancement in the blue-violet PL intensity (Fig. 1) caused by the formation of neutral oxygen vacancy luminescent defects at the NP/matrix interface region, persisting even at annealing temperatures as high as 1373 K.

**Figure 1.** PL spectra of Sn-implanted SiO$_2$ layers after direct annealing in vacuum and after aging followed by annealing in vacuum for 0.5 h at different temperatures. Extracted from ref. [1].