Shape coexistence in the neutron-deficient isotope ¹⁸⁷Tl

<u>A.B.F. Lee</u>^a, G.J. Lane^a, G.D. Dracoulis^a, A.O. Macchiavelli^b, P. Fallon^b and R.M. Clark^b

^a Department of Nuclear Physics, The Australian National University, ACT 0200, Australia.

^b Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720.

Neutron-deficient nuclei near the Z=82 closed shell exhibit the phenomenon of shape coexistence where the nucleus can take on oblate, prolate, and even spherical shapes at around the same excitation energy. The single-proton excitations in ¹⁸⁷Tl (with Z=81) can be used as a probe into the microscopic mechanisms behind this phenomenon. Previous studies of ¹⁸⁷Tl deduced the presence of coexisting prolate and oblate shapes from characteristic level structures [1, 2], and these shapes were also assigned from direct quadrupole moment measurements [3]. Long-lived states with microsecond lifetimes were also observed in ¹⁸⁷Tl [4], but their microscopic origin was uncertain.

A new study of ¹⁸⁷Tl was initiated at the Lawrence Berkeley National Laboratory, using a heavy-ion fusion-evaporation reaction involving 154 MeV ³²S beams incident on a 1.2 mg/cm² ¹⁵⁹Tb target, backed with 4.5 mg/cm² of ¹⁹⁷Au. The beams were provided by the 88-inch cyclotron, and were pulsed at 60 ns intervals. The emitted gamma-rays were detected by the Gammasphere array [5], and the structure of ¹⁸⁷Tl was subsequently studied through the application of the techniques of gamma-ray spectroscopy.

Extensions to existing structures were observed, including confirmation of the $h_{11/2}$ band which is interpreted to have a prolate deformation larger than previously predicted [2], the first observation of the unfavoured signature of the $h_{9/2}$ prolate band, and identification of new structures above the microsecond isomers. Evidence for the existence of enhanced prolate deformations associated with the $i_{13/2}$ structure will also be presented.

- [1] W. Reviol et al., Physica Scripta T56, 167 (1995).
- [2] G. J. Lane *et al.*, Nucl. Phys. A 589, 129 (1995).
- [3] S. K. Chamoli *et al.*, Phys. Rev. C **71**, 054324 (2005).
- [4] A. P. Byrne *et al.*, Eur. Phys. J. A 7, 41 (2000).
- [5] R. Janssens and F. Stephens, *Nuclear Physics News* Vol. 6, No. 4, 9 (1996).