Long lifetime components in the decay of excited super-heavy nuclei

A. Chbihi,¹ A. Drouart,² J.D. Frankland,¹ M.O. Frégeau,¹ D. Jacquet,³
M. Morjean,¹ L. Nalpas,² M. Parlog,^{1,4} and L. Tassan-Got³

¹GANIL, CEA-DSM and IN2P3-CNRS, B.P. 55027, F-14076 Caen Cedex, France ²CEA-Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif sur Yvette Cedex, France ³IPNO, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex, France ⁴LPC, Caen Cedex, France

Evidences for long lifetime components (longer than 10^{-18} s) in the decay of excited superheavy nuclei with Z = 120 and 124 have been obtained at GANIL by the blocking technique in single crystals [1]. As expected from these results, X_K fluorescence of atoms with Z = 120 formed in the reaction ²³⁸U+⁶⁴Ni at 6.6 MeV per nucleon has been observed in a recent experiment [2]. X_K rays detected in coincidence with fission fragments from Z=120 have been unambiguously identified from their energies and from reaction mechanism analyses demonstrating that they are emitted by the compound nucleus (or its daughter nuclei, after neutron evaporation). Since X_K fluorescence results from the filling of K vacancies that have a lifetime of the order of 10^{-18} s for the element with Z = 120, the rather high measured fluorescence yield provides us with an additional confirmation of the existence of long lifetime components in the decay of the formed Z = 120 nuclei.

The very long fission times inferred, as well as the tiny cross-sections expected for evaporation residues, have been taken into account in the framework of a statistical decay model, considering temperature dependent fission barriers as predicted by Hartree–Fock–Bogoliubov calculations [3, 4]. The strong expected correlation between the fission barriers and the survival probability at long times provides us with a unique tool to explore super-heavy element stability far beyond the mass domain accessible by other experimental approaches.

^[1] M. Morjean et al., Phys. Rev. Lett. 101, 072701 (2008).

^[2] M.O. Frégeau et al., Phys. Rev. Lett. 108, 122701 (2012).

^[3] M. Girod and J.F. Berger, private communication.

^[4] M. Morjean et al., J. of Phys. : Conference Series 282, 012009 (2011).