Role of cluster structure of 7Li in the dynamics of fragment capture

1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
2GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France.
3ECT*, Villa Tambosi, I-38123 Villazzano, Trento, Italy.
4DNAP, Tata Institute of Fundamental Research, Mumbai 400005, India.
5Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

In weakly bound nuclear systems, correlation among nucleons and pairing are manifested, among others, as an emergence of strong clustering and exotic shapes [1]. Lithium isotopes present a unique example of nuclear clustering, with lighter isotopes (6, 7Li) having a well-known $\alpha + x$ cluster structure and the heaviest bound isotope (11Li) exhibiting a two neutron Borromean structure. 9Li has been described as 6He + t in a recent work. 7Li is an equally interesting case with its well-known weakly bound $\alpha + t$ structure as well as less studied more strongly bound clusters, 6He + p and 5He + d. Recent studies with weakly bound nuclei have also focused on the understanding of the role of novel structures in the reaction dynamics [2]. Dominant reaction modes in nuclei with low binding energies, involve inelastic excitation to low lying states in the continuum or transfer/capture of one of the cluster fragments from their bound/unbound states to the colliding partner nucleus [3].

We have performed exclusive particle-gamma coincidence measurements in the 7Li + 198Pt system to study the dynamics of the process of fragment capture for the various cluster structures ($\alpha + t$, 6He + p and 5He + d) of 7Li, at energy near the Coulomb barrier. Recent dynamic classical trajectory calculations [3], constrained by the measured fusion, α and t capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. Comparison of results from the calculations with the measured data, illustrating the role played by the cluster structures of 7Li in understanding the reaction dynamics will be presented.