Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system

M. De Cesare1, N. De Cesare2, A. D’Onofrio2, L. K. Fifield1, C. Sabbarese2, F. Terrasi2

1 Department of Nuclear Physics, The Australian National University, ACT 0200, Australia
2 CIRCE and Dipartimento di Matematica e Fisica, II Università di Napoli, 81100 Caserta, Italia

Accelerator Mass Spectrometry (AMS) is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236U and 239Pu. A new actinide line [1,2,3,4], based on a 3-MV AMS pelletron tandem system, is operated at the Center for Isotopic Research on Cultural and Environmental heritage (CIRCE) [5] in Caserta, Italy.

In order to validate the energy and position determinations of the 236U ions, the energy calibration of the 16 strip silicon detector was verified by comparing the pulse height defect with the literature values.

Results on 236U/238U isotopic ratio show that the background level of about 3×10^{-11} (5x10$^{-12}$ was obtained just with the central strip) can be reached using a Time of Flight-Energy (TOF-E) system in conjunction with the 16-strip silicon detector with a flight path of 1.5 m. This value is just slightly better than the upper limit of 6×10^{-11} estimated from the yield distribution vs strip number measured without the TOF-E system [2]. We interpret this result as a consequence of the angular straggling due to the thickness of the carbon foil, which deteriorates the spatial separation of the interfering ions with respect to 236U.

In this picture to identify more precisely the background contributions and their spatial distributions an upgrade of the CIRCE actinides detector system is planned for the future using a TOF-E system, with a longer flight path, a thinner carbon foil and a 16 strip silicon detector.