The variation of the 236U and 239Pu concentrations as a function of depth has been studied in an undisturbed forest area in the Herbert River catchment (northeastern Queensland, Australia) well removed from nuclear weapon test sites. The chemical separation of U and Pu was carried out with a double column, which has the advantage of the extraction of both elements from a relatively large soil sample (~20 g) within a day.

The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both 236U and 239Pu were found at a depth of 2-3 cm. The 236U/239Pu isotopic ratio in fallout at this site, as deduced from the ratio of the 236U and 239Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ~0.2. The 236U inventory of $(8.4 \pm 0.3) \times 10^{11}$ at/m2 was more than an order of magnitude lower than values reported for the Northern Hemisphere. The 239Pu activity concentrations are in excellent agreement with a previous study and the 239,240Pu inventory was (13.85 ± 0.29) Bq/m2. The weighted mean 240Pu/239Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S).