²³⁶U concentrations and ²³⁶U/²³⁹Pu atom ratios in a Southern Hemisphere soil far from nuclear test or reactor sites

M. Srncik, S.G. Tims, M. De Cesare and L.K. Fifield

Department of Nuclear Physics, The Australian National University, ACT 0200, Australia

The variation of the ²³⁶U and ²³⁹Pu concentrations as a function of depth has been studied in an undisturbed forest area in the Herbert River catchment (northeastern Queensland, Australia) well removed from nuclear weapon test sites. The chemical separation of U and Pu was carried out with a double column, which has the advantage of the extraction of both elements from a relatively large soil sample (~20 g) within a day.

The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both 236 U and 239 Pu were found at a depth of 2-3 cm. The 236 U/ 239 Pu isotopic ratio in fallout at this site, as deduced from the ratio of the 236 U and 239 Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ~0.2. The 236 U inventory of (8.4 ± 0.3) x 10^{11} at/m² was more than an order of magnitude lower than values reported for the Northern Hemisphere. The 239 Pu activity concentrations are in excellent agreement with a previous study and the 239,240 Pu inventory was (13.85 ± 0.29) Bq/m². The weighted mean 240 Pu/ 239 Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region $(0-30^{\circ}\text{S})$.