Mass asymmetric fission in ⁴⁰Ca+¹⁴²Nd reaction

E. Prasad,¹ D. J. Hinde,¹ E. Williams,¹ M. Dasgupta,¹ I. P. Carter,¹ K. J.

Cook,¹ D. Y. Jeung,¹ D. H. Luong,¹ S. McNeil,¹ C. S. Palshetkar,¹ D. C.

Rafferty,¹ C. Simenel,¹ A. Wakhle,¹ K. Ramachandran,¹ C. Simenel,¹

J. Khuyagbaatar,² Ch. E. Dullmann,² B. Lommel,² and B. Kindler²

¹Department of Nuclear Physics, The Australian National University, ACT 2601, Australia ²GSI Helmholtzzentrum fr Schwerionenforschung, 64291, Darmstadt, Germany

An important observable in nuclear fission is the distribution of fragment masses, which provides crucial information about the reaction mechanism. Mass-asymmetric fission in spontaneous and low energy fission of actinide nuclei could be explained by the effect of shells in the fragments near scission, with increased binding energy near magic numbers. However, the observation of mass asymmetric fission from β -delayed measurements [1] in neutron deficient Hg isotopes could not be explained with fragment shell properties which would favour symmetric splitting into two ⁹⁰Zr nuclei. This suggests the important role of shell structure other than those of fragments here.

Fission fragment mass disratio tributions have been measured at $^{40}Ca+^{142}Nd$ ANU reaction for the populating compound nucleus the 182 Hg at different excitation ener-Mass gies (E*). asymmetric fission has been observed in this reaction at E*=33.6 MeV, for the first time. Mass ratio (\mathbf{M}_R) distribution observed in this study is compared with that reported for 180 Hg [2] in FIG. 1. Superficially, observation our seems to persistence support the of shell ef-E*=33.6 MeV. Howfects up to ever, the result may also be explained assuming 25% contribution from third chance fission of ¹⁸⁰Hg. The observation of massasymmetric fission following heavy ion fusion opens a new avenue up exploring this new mode for of fisdeficient sion in neutron Hg region.

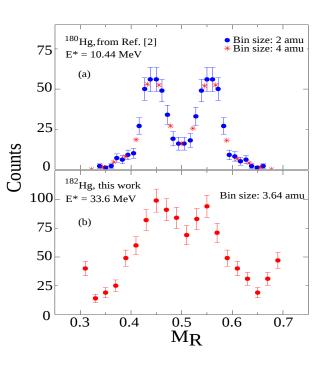


FIG. 1: The M_R distribution measured in this study compared with that of ¹⁸⁰Hg reported in Ref. [2].

- [1] A. N. Andreyev, M Huyse and P. Van Duppen, Rev. Mod. Phys. 85, 1541 (2013).
- [2] J. Elseviers et al., Phys. Rev C 88, 044321 (2013)