Experimental signatures of simultaneous existence of $\alpha - d$ and $^{3}He - t$ clusters in 6Li

Department of Nuclear Physics, The Australian National University, ACT 0200, Australia

Clustering in light nuclei is an interesting structure phenomenon. It is obvious to think of 6Li as a cluster of $\alpha - d$ because it is energetically most favored. There have been theoretical suggestions of the simultaneous existence of $\alpha - d$ and $^{3}He - t$ clusters as their wavefunctions are not orthogonal [1]. Here, we report our recent findings on the existence of both these cluster structures in 6Li. The experiment was performed with 6Li beams from the 14UD tandem accelerator at the Australian National University incident on thin 58Ni and 64Zn targets. Charged fragments were measured at sub-barrier energies in coincidence using the BALIN array [2]. Breakup can be characterized by E_{rel} (the relative energy between the breakup fragments) and Q (the reconstructed Q-value). Fig. 1 (Left) shows the reconstructed Q-E_{rel} spectrum for 6Li bombarding 58Ni. The main mode of breakup is neutron stripping from the projectile followed by breakup of 5Li into $\alpha + p$ populating several excited states of 59Ni. The other significant breakup channel is direct breakup of 6Li into $\alpha + d$, giving the peak at 0.7 MeV in E_{rel} corresponding to the first excited state of 6Li. We observed for the first time a break-up mode in which triton is transferred to the target nucleus and the excited 3He breaks up into a proton and a deuteron. Only by assuming a triton is transferred can the coincident p and d be reconstructed into sharp peaks in the Q spectrum, corresponding to excited states in the (target+triton) nucleus, as shown in Fig. 1 (Right) for the reaction with 64Zn.

FIG. 1: Left: Two-dimensional E_{rel}-Q spectrum of breakup pairs for 6Li + 58Ni. The blue color is for $\alpha + p$, the green color is for $\alpha + d$ and the red color is for $p + p$ breakup channel.; Right: One-dimensional Q spectrum showing peak for $^{3}He - t$ breakup mode for 6Li + 64Zn.