Experimental signatures of simultaneous existence of $\alpha - d$ and ${}^{3}He - t$ clusters in ${}^{6}Li$

Sunil Kalkal,¹ K. J. Cook,¹ D. H. Luong,¹ M. Dasgupta,¹ E. Simpson,¹ I. P. Carter,¹ D. J. Hinde,¹ C. Simenel,¹ C. S. Palshetkar,¹ D. C. Rafferty,¹

D. Y. Jeung,¹ E. Prasad,¹ E. Williams,¹ G. Mohanto,¹ and K. Vo-Phuoc¹

¹Department of Nuclear Physics, The Australian National University, ACT 0200, Australia

Clustering in light nuclei is an interesting structure phenomenon. It is obvious to think of ⁶Li as a cluster of $\alpha - d$ because it is energetically most favored. There have been theoretical suggestions of the simultaneous existence of $\alpha - d$ and ${}^{3}He - t$ clusters as their wavefunctions are not orthogonal [1]. Here, we report our recent findings on the existence of both these cluster structures in ⁶Li. The experiment was performed with ⁶Li beams from the 14UD tandem accelerator at the Australian National University incident on thin ⁵⁸Ni and ⁶⁴Zn targets. Charged fragments were measured at sub-barrier energies in coincidence using the BALIN array [2]. Breakup can be characterized by E_{rel} (the relative energy between the breakup fragments) and Q (the reconstructed Q-value). Fig. 1 (Left) shows the reconstructed $Q-E_{rel}$ spectrum for ⁶Li bombarding ⁵⁸Ni. The main mode of breakup is neutron stripping from the projectile followed by breakup of ⁵Li into $\alpha + p$ populating several excited states of ⁵⁹Ni. The other significant breakup channel is direct breakup of ⁶Li into $\alpha + d$, giving the peak at 0.7 MeV in E_{rel} corresponding to the first excited state of ⁶Li. We observed for the first time a break-up mode in which triton is transferred to the target nucleus and the excited ³He breaks up into a proton and a deuteron. Only by assuming a triton is transferred can the coincident p and d be reconstructed into sharp peaks in the Q spectrum, corresponding to excited states in the (target+triton) nucleus, as shown in Fig. 1 (Right) for the reaction with 64 Zn.

FIG. 1: Left: Two-dimensional E_{rel} -Q spectrum of breakup pairs for ${}^{6}\text{Li} + {}^{58}\text{Ni}$. The blue color is for $\alpha + p$, the green color is for $\alpha + d$ and the red color is for p + p breakup channel.; Right: One-dimensional Q spectrum showing peak for ${}^{3}He - t$ breakup mode for ${}^{6}\text{Li} + {}^{64}\text{Zn}$.

[1] K. Wildermuth and Y.C. Tang, A unified theory of the nucleus (Vieweg, Braunschweig, 1977)

[2] D. H. Luong et al., Phys. Lett. B 695, 105 (2011)