The importance of being weakly-bound


1Department of Nuclear Physics, The Australian National University, ACT 0200, Australia
2ECT*, Villa Tambosi, I-38123 Villazzano, Trento, Italy
3JCSMR, The Australian National University, ACT 0200, Australia
4Ocular Robotics, NSW 2208, Australia

Reactions with weakly-bound light nuclei \(^7\)Li and \(^9\)Be have continually being useful as spectroscopic tools, particularly for their incomplete fusion products [1–3]. Breakup and/or nucleon-transfer [4–8] are believed to be important reaction mechanisms in weakly-bound nuclei, possibly contributing to the high incomplete fusion cross-sections observed. However direct evidence linking breakup and/or nucleon-transfer to incomplete fusion is scarce.

From our recent sub-barrier coincidence measurements of \(^7\)Li-induced reactions [9], nucleon transfer followed by breakup of the projectile-like nuclei was observed to be a prominent channel. Furthermore, new understanding of excitation dependent life-time of resonance states in weakly-bound nuclei have allowed promising development in the classical trajectory model PLATYPUS [10] that will shed light on breakup and its role in incomplete fusion.

New results from this study will be presented and discussed.