Spectroscopic study of ²⁷**Al from the** ²⁶**Al(d,p)**²⁷**Al reaction, implication for the destruction of** ²⁶**Al in WR and AGB stars.**

V. Margerin,¹ G. Lotay,² T. Davinson,¹ M. Aliotta,¹ G. Christian,³ B. Davids,³ D.T. Doherty,¹ J. Fallis,³ D. Howell,³ O. Kirsebom,³ A. Rojas,³ C. Ruiz,³ J. Tostevin,² and P.J. Woods¹

¹School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ²Department of Physics, University of Surrey, Guildford, United Kingdom ³TRIUMF, Vancouver, Canada

The observations of the radioactive decay of ²⁶Al by satellites, the first observation of ongoing nucleosynthesis in the galaxy, has triggered an intense need for understanding the mechanisms responsible for its production and destruction in galactic phenomena. All-sky maps tracking γ -rays associated with its decay have shown that it was produced by several astrophysical sites such as core collapse supernovae, Wolf-Rayet (WR) stars and Asymptotic Branch Giant (AGB) stars. A relatively small network of reactions is responsible for the observed ²⁶Al quantities. In explosive hydrogen-burning environment, 0.06 GK \leq T \leq 0.1 GK, the destruction rate is mainly determined by the ${}^{26}Al(p,\gamma){}^{27}Si$ reaction at the corresponding excitation energies. The occurrence of resonances above the ²⁶Al+p threshold in ²⁷Si has a large impact on the galactic ²⁶Al abundance inherent to each of these astrophysical sites. Resonant states have been identified in ²⁷Si by two spectroscopic studies [1, 2]. However, the strength of two of those states, at 7532 and 7589 keV (resp. 68 and 127 keV) excitation (resonance) energy, remains mainly unknown. These low energy resonances are currently not reachable via direct measurement as the cross section fall of dramatically with energy. In this study, this obstacle is overpassed via a state of the art spectroscopic study of the mirror nucleus ${}^{27}Al$ with the ${}^{26}Al(d,p){}^{27}Al$ transfer reaction. Such study allows for an indirect measurement of the 127 keV resonance in ²⁷Si by measuring the spectroscopic factors of the states in ²⁷Al. It is currently understood (see, for example, Ref. [1]) that the state in ²⁷Al, equivalent to this resonance, is at 7806 keV, state for which we provide a measurement, while our resolution allows for a stringent limit on the strength of the 68 keV resonance.

^[1] G. Lotay et al., Phys. Rev. C 84, 035802 (2011).

^[2] A. Parikh et al., Phys. Rev. C 84, 065808 (2011).