Results from the recent ^{207,208}**Tl experiment using the ISOLDE Decay Station**

R. J. Carroll,¹ Zs. Podolyák,¹ T. Alexander,¹ S. Ansari,² L. M. Fraile,³ C. Fahlander,⁴ W. Gelletly,¹ R.-B. Gerst,² H. Grawe,⁵ A. Gredley,⁶ P. Greenlees,⁷ L. Harkness-Brennan,⁶ S. Judge,⁸ J. Konki,⁷ M. Kowalska,⁹ I. Kuti,¹⁰ S. Lalkovski,¹ I. Lazarus,¹¹ R. Lică,¹² M. Madurga,⁹ R. E. Mihai,¹² M. Madurga,⁹ S. Noe,¹² C. Nita,^{13,12} Z. Patel,¹ V. Pucknell,¹¹ E. Rapisarda,⁹ P. H. Regan,^{1,8} C. M. Shand,¹ S. Stegmann,² Ch. Sotty,¹⁴ V. Vedia,³ P. M. Walker,¹ F. Wearing,⁶ and H. De Witte¹⁴ ¹Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom ²Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany ³Grupo de Física Nuclear, FAMN, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain ⁴Department of Physics, Lund University, S-22100, Lund, Sweden ⁵GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany ⁶Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK ⁷Department of Physics, PO Box 35 (YFL), FI-40014 University of Jyväskylä, Finland ⁸National Physical Laboratory, Teddington, Middlesex, TW11 OLW, UK ⁹CERN, Physics Department, 1211 Geneva 23, Switzerland ¹⁰Institute of Nuclear Research of the Hungarian Academy of Sciences, 4026 Debrecen, Hungary ¹¹STFC, Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom ¹²H. Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania ¹³University of Brighton, Brighton BN2 4GJ, United Kingdom ¹⁴KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium

A recent experiment was performed using the ISOLDE Decay Station to measure low-lying states in ²⁰⁷Tl populated via the β decay of ²⁰⁷Hg, produced using a molten lead target. The ²⁰⁷Tl nucleus has one proton less than ²⁰⁸Pb, which is a classic shell model core. Above the lowest-lying states, structure is likely based on the coupling of the proton hole to either a broken proton or neutron pair, which would require excitation across a shell closure, or to a collective octupole excitation. The observation of these states will reveal information on the single-particle orbitals near the shell closures at Z = 82 and N = 126, which will be valuable for the improvement of the predictive power of nuclear models.

An additional objective of this experiment was to test the feasibility of producing a ²⁰⁸Hg beam from a molten lead target with the intention of studying states in ²⁰⁸Tl populated via the ²⁰⁸Hg β decay. Such a study is crucial for the understanding of the proton-hole neutron-particle interactions in this region as information is scarce.

The ISOLDE Decay Station consisted of a four HPGe Clover detectors and a MINIBALL cluster for high-resolution γ -ray spectroscopy, in addition to three plastic scintillator detectors for observing radioactive β -decay events. Beams of ²⁰⁷Hg and ²⁰⁸Hg were implanted onto a tape from which subsequent radioactive decays could be observed. Data were recording using

a triggerless data acquisition system in which every signal was recorded with a time stamp, enabling coincident signals to be correlated in software.

Results from both the ²⁰⁷Tl and ²⁰⁸Tl objectives of this experiment will be presented. Gamma-ray transitions associated with ²⁰⁷Tl have been identified using coincidences with known transitions [1] and by comparing their time profile to the known half-life of the mother nucleus. The previous level scheme has been extended and several new transitions, some with energies expected for octupole excitations [2], will be discussed and compared to shell model calculations.

A new level scheme has also been constructed for ²⁰⁸Tl. The assignment of γ -ray transitions to this nucleus has proven to be more complex owing to the half-life of the mother nucleus appearing to be significantly shorter than previously thought [3], which will be discussed. Calculations with which to compare the level scheme have also been performed.

^[1] B. Jonson *et al.* Proc. Int. Conf. Helsingor, Danmark, Vol.2 p.640 (1981)

^[2] Zs. Podolyák et al. J. Phys.: Conf. Ser. 580, 012010 (2015)

^[3] L. Zhang et al. Chin. Phys. Lett. Vol.14 No.7 p.507 (1997)