SYSTEMATIC STUDY OF FUSION PROBABILITY IN PRE-ACTINIDES

Tathagata Banerjee¹, S. Nath¹, A. Jhingan¹, Gurpreet Kaur², R. Dubey¹, A. Yadav¹, P. V. Laveen³, A. Shamlath³, M. Shareef³, J. Gehlot¹, N. Saneesh¹, E. Prasad³, P. Sugathan¹ and Santanu Pal⁵

¹Nuclear Physics Group, Inter University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi 110067, India
²Department of Physics, Panjab University, Chandigarh 160014, India
³Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasaragod 671314, India
⁴Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 2601, Australia
⁵CS-6/1, Golf Green, Kolkata 700095, India

Presence of fission-like processes (NCNF) in fusion between two massive nuclei, without the formation of a compound nucleus (CN), causes the fusion probability, P_{CN}, to deviate from unity. Quantitative estimation of average fusion probability, $<P_{CN}>$, has been attempted from different experimental probes e.g. (a) fission fragment (FF) angular distribution, (b) FF mass and total kinetic energy (TKE) distribution and (c) evaporation residue (ER) excitation function. In a recent systematic analysis of ER excitation functions for 52 reactions [1], $<P_{CN}>$ was found to be dependent both on the entrance channel parameters and bulk properties of the composite system. This study helped to find out approximate boundaries from where $<P_{CN}>$ started to deviate from unity, signifying a transition from statistical to dynamical regime. For the experimental verification of the same, a systematic investigation of the FF angular anisotropy in pre-actinide nuclei (Z = 83-88) was carried out at IUAC. FF angular distributions were measured for six ^{28}Si-induced reactions involving ^{169}Tm, ^{176}Yb, ^{175}Lu, ^{180}Hf, ^{181}Ta and ^{182}W targets at and above the Coulomb barrier. FFs were detected by nine hybrid telescopes, each consisting of a ΔE (gas) detector and a E (silicon) detector, with large angular coverage ($\theta_{lab} = 41^o-170^o$). The experimental anisotropies and fission cross-sections were compared with theoretical predictions. The ratio of the experimental to the calculated anisotropy, $[(A_{exp}-1)/(A_{cal}-1)]$, showed deviation from unity near the Coulomb barrier, indicating presence of NCNF in the studied reactions. We also observed, by comparing anisotropies with those from neighbouring systems, that $<P_{CN}>$ increasingly deviates from unity as one moves from pre-actinides to actinides.