New neutron-rich isotope production in ¹⁵⁴Sm+¹⁶⁰Gd

Ning Wang¹ and <u>Lu Guo^{2,3}</u>

 ¹ Department of Physics, Guangxi Normal University, Guilin 541004, People's Republic of China
²School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
³State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Deep inelastic scattering in ¹⁵⁴Sm+¹⁶⁰Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD) model and time dependent Hartree-Fock (TDHF) theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI) for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with $58 \le Z \le 76$ are observed and the production cross sections are at the order of μ b to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

[1] Ning Wang and Lu Guo, Phys. Lett. B 760 (2016) 236.