New neutron-rich isotope production in $^{154}\text{Sm}^{+}^{160}\text{Gd}$

Ning Wang1 and Lu Guo2,3

1Department of Physics, Guangxi Normal University, Guilin 541004, People’s Republic of China
2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

Deep inelastic scattering in $^{154}\text{Sm}^{+}^{160}\text{Gd}$ at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD) model and time dependent Hartree-Fock (TDHF) theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI) for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with $58 \leq Z \leq 76$ are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.