Measurement of the ⁵³Mn (n, γ) cross-section at stellar energies

J. Ulrich¹,

M. Airanov¹, O. Aviv², A. Barak², Y. Buzaglo², H. Dafna², R. Dressler¹, B. Kaizer², N. Kievel¹, D. Kijel², A. Kreisel², M. Paul³, E. Peretz³, D. Schumann¹, P. Sprung¹, M. Tessler², L. Weissman² and Z. Yungrais²

¹ Department of Nuclear Energy and Safety, Paul Scherrer Institute, 5232 Villigen, Switzerland ² Soreq NRC, 81800 Yavne, Israel ³ Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

⁵³Mn ($t_{1/2} \approx 3.7$ Ma) is expected to be one of the major short-lived radioisotopes produced during type II supernovae explosions [1, 2]. It can undergo further nuclear reactions due to its long half-life, which may influence the isotopic abundances of neighboring stable isotopes. Additionally, it can serve as a sensitive chronometer to date processes in the early solar system [3] and to determine the exposure time of terrestrial material to high energetic cosmic radiation [4].

We report here on the first measurement of the Maxwellian Averaged Cross-Section (MACS) of ⁵³Mn at stellar neutron energies performed at the Soreq Applied Research Accelerator Facility (SARAF) facility at the Soreq nuclear research center.

The target containing $\sim 10^{18}$ atoms 53 Mn was prepared using a stock solution previously extracted and purified from activated accelerator waste in the course of the ERAWAST initiative [5] at PSI. The total number of 53 Mn atoms in the target was deduced from a retained sample via multi-collector ICP-MS measurements at PSI.

The activation of ⁵³Mn with neutrons of a quasi-Maxwellian spectrum of about 40 keV was performed using the Liquid-Lithium Target LiLiT) installation at the Soreq Applied Research Accelerator Facility (SARAF-) [6]. The ⁵³Mn target was encapsulated in an aluminum holder and introduced into a vacuum chamber in close proximity to the neutron entrance window immediately behind the liquid Lithum film.

The total accumulated neutron fluence was deduced from γ -measurements of co-activated gold foils mounted externally on the target holder and of natural cobalt added to the target material as an internal flux monitor. The ⁵⁴Mn, ⁶⁰Co and ¹⁹⁸Au activities were measured before and after the irradiation using high-resolution γ -spectroscopy.

- [1] F.K. Thielemann, et al., Astrophys J. 460, 408 (1996)
- [2] S. Sahijpal, J. Astrophys. Astr. 35 121 (2014)
- [3] D.P. Glavin, et al., Meteor. & Planet. Sci. 39, 693 (2004)
- [4] J.M. Schaefer, et al., Earth and Planet. Sci. Lett 251, 334 (2006)
- [5] D. Schumann, et al., *Radiochim. Acta* 97, 123 (2009)
- [6] M. Paul, et al., Eur. Phys. J. A, 55, 44 (2019)