Everywhere present, hard to detect: oceanography to geology with the new AMS isotope ²³⁶U

<u>P. Steier</u>, ¹ R. Eigl, ² A. Priller, ¹ F. Quinto, ³ A. Sakaguchi, ⁴ I. Spendlikova, ⁵ M. Srncik, ⁶ G. Wallner, ² S. Winkler, ¹ and R. Golser ¹

¹Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
²Department of Inorganic Chemistry, University of Vienna, A-1090 Vienna, Austria
³European Commission-Joint Research Centre,

Institute for Transuranium Elements, 76125 Karlsruhe, Germany

⁴Graduate School of Science, Hiroshima University, Hiroshima, 739-8526, Japan

⁵Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University Prague, 166 36 Praha, Czech Republic

⁶Department of Nuclear Physics, The Australian National University, ACT 0200 Canberra, Australia

The recent finding that about 1000 kg of ²³⁶U from nuclear weapons tests were spread by global fallout [1, 2] has opened up a range of possible applications. ²³⁶U is present at levels well above the maximum natural concentrations in practically all compartments of the surface environment. Several laboratories worldwide have developed capabilities for detection of ²³⁶U with sufficient sensitivity during the past years.

In global oceans, where 236 U is present at levels up to 236 U/U $\sim 10^{-8}$ first successful applications underline the good suitability as a tracer for oceanography, and show that relatively small water samples are sufficient [2, 3]. At VERA, we have measured ocean depth profiles and coral archives, revealing complementary or superior properties to established tracers like 14 C, CFCs, 137 Cs and 129 I. Studies of land-bound fallout 236 U in soil and water samples demonstrate the applicability in hydrology and sediment transport studies.

Technical development at VERA focuses on decreasing the minimum sample size for anthropogenic 236 U. However, the relatively high isotopic ratios encountered do not fully exploit the extraordinary abundance sensitivity of VERA. We therefore strive to extend our measurement capabilities towards the natural 236 U in typical crustal rocks (expected isotopic ratio between 10^{-13} and 10^{-15}), by installing an additional bending magnet and switching to helium as a stripper gas. Also laboratory background must be minimized. We expect many applications on the field of geology and hydrology.

^[1] A. Sakaguchi et al., Sci. Tot. Env. 407, 4238 (2009).

^[2] S.R. Winkler, P. Steier, J. Carilli, Earth & Planetary Sci. Lett. 124-130, 359 (2012).

^[3] A. Sakaguchi et al., Earth & Planetary Sci. Lett. **333-334**, 165 (2012).