The Room-Temperature Synthesis of HfO₂/HfO_x Heterostructures by Ion-Implantation

S. K. Nandi¹, D. K. Venkatachalam¹, S. Ruffell², J. England², P. Grande^{1,3}, M. Vos¹ and <u>R. G. Elliman¹</u>

¹Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia ²Varian Semiconductor Equipment, Silicon Systems Group, Applied Materials Inc., USA ³Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

Implantation of Hf films at room temperature with 3 keV oxygen ions is shown to produce HfO_2/HfO_x heterostructures suitable for resistive switching applications [1]. The resulting films are characterised by transmission electron microscopy (TEM), glancing incidence x-ray diffraction (GIXRD), electron Rutherford backscattering spectrometry (e-RBS), reflection electron energy loss spectroscopy (REELS) and x-ray photoelectron spectroscopy (XPS).

Resistive switching characteristics of the films are compared with those of films grown by ALD at 200°C. Analysis shows that irradiation to a fluence of 1×10^{17} O.cm⁻² is sufficient to produce a polycrystalline (monoclinic HfO₂) HfO₂ layer extending from the surface to a depth of ~12 nm, and an underlying graded HfO_x layer extending an additional ~7 nm. The bandgap, dielectric strength and resistive switching characteristics of the films are shown to be indistinguishable from those of amorphous films deposited by atomic layer deposition (ALD) at 200 °C. These results demonstrate the efficacy of ion-implantation for low-temperature synthesis of functional oxide layers.

[1]. Nandi, S.K., et al., *Room Temperature Synthesised HfO*₂/*HfO*_x *Heterostructures by Ion-implantation*. Nanotechnology, **29**(42): p. 425601 (2018).