Study of Astrophysical s-Process Neutron Capture Reactions at the High-Intensity SARAF-LiLiT Neutron Source

<u>Michael Paul</u>¹, Moshe Tessler^{1,3}, Tala Palchan¹, Carlos Guerrero², Jorge Lerendegui Marco², José Manuel Quesada², Shlomi Halfon³, Leonid Weissman³, Arik Kreisel³, Asher Shor³, Dorothea Schumann⁴, Rugard Dressler⁴, Stephan Heinitz⁴, Emilio Andrea Maugeri⁴, Niko Kivel⁴, Ulli Köster⁵, Jake Zappala⁶, P. Müller⁶, Wei Jiang⁷, Zheng-Tian Lu⁷, Daniel Baggenstos⁸, Roland Purtschert⁸, Mario Weigand⁹, Tanja Heftrich⁹, René Reifarth⁹ and Daniel Veltum⁹

¹ The Hebrew University, Jerusalem, Israel
² University of Seville, Seville, Spain
³ Soreq Nuclear Research Center, Yavne, Israel
⁴Paul Scherrer Institute, Villigen, Switzerland
⁵ Institut Laue-Langevin, Grenoble, France
⁶ Argonne National Laboratory, Argonne, IL, USA
⁷ University of Science and Technology of China, Hefei, China
⁸ University of Bern, Bern, Switzerland
⁹ Goethe University of Frankfurt, Frankfurt, Germany

We report on recent experiments at the Soreq Applied Research Accelerator Facility - Liquid-Lithium Target (SARAF-LiLiT) laboratory dedicated to the study of sprocess neutron capture reactions. The mA-proton beam at 1.92 MeV (2-3 kW) from SARAF Phase I yields high-intensity 30 keV quasi-Maxwellian neutrons (3- 5×10^{10} n/s). The high neutron intensity enables Maxwellian averaged sections (MACS) measurements of low-abundance or radioactive targets. cross Neutron capture reactions on the important s-process branching points ¹⁴⁷Pm and 171Tm were investigated by activation in the LiLiT neutron beam and γ measurements of their decay products. MACS values at 30 keV extracted from the experimental spectrum-averaged cross sections are obtained and will be discussed. The Kr region, at the border between the so-called weak and strong s-process was also investigated. Atom Trap Trace Analysis (ATTA) was used for the first time for the measurement of a nuclear reaction cross section and the MACS(30 keV) of the 80 Kr $(n,\gamma)^{81}$ Kr $(t_{1/2}$ = 230 ky) and 84 Kr $(n,\gamma)^{85}$ gKr(10.8 y) were determined. The latter determination was confirmed both by low-level β counting and γ spectrometry while the shorter capture products 79,85m,87 Kr were detected by γ -spectrometry only. leading to ^{85m}Kr(4.5 h) measured in this experiment has The partial MACS interesting implications since this state decays preferentially by β decay (79%) to ⁸⁵Rb on a faster time scale than does ^{85g}Kr and behaves thus as an *s*-process branching point. This work was supported in part by Pazy Foundation (Israel) and Israel Science Foundation.